IDS Énergie and PVavenue Inc. proudly present

15 kW solar PV + battery storage for the Eastmain (Baie-James) project

Weather conditions in Eastmain, Baie-James

- Case study: Eastmain
- ✓ Location: 52°14' N, 78°30' W
- ✓ Climate Zone: Sub-Arctic
- ✓ Average air temperature: –2.5 °C
- ✓ **Rel. humidity** : 72.5 %
- ✓ **Precipitation**: 795 mm
- ✓ Wind speed: 4.1 m/s (14.8 km/h)

Solar PV (photovoltaic) potential in Eastmain

Solar irradiation and air temperature Optimized in the second second

✓ Daily solar irradiation (horizontal)

: 3.18 kWh/m²/day → 3.2 Sun hours/day

 \checkmark Air temperature in summer (< 15°C) and in winter (< –22.8° C)

 ✓ Very good PV generation in summer, However, not good in winter (Oct to Jan)

✓ Precipitation and wind speed

✓ Precipitation in the second half of the year

✓ Snow mitigation solution needed for winter season (optimal tilt angle required)

✓ Medium wind speed (<16 km/hr)

Voices of customer (VOC)

✓ Independance from the Hydro-Québec grid

→ off-grid (= stand-alone) energy net-zero house system

✓ Renewable and environmentally-friendly energy source

→ Solar PV (photovoltaic) system, no-diesel generator

✓ Reliable and durable energy source, operation and maintenance (O&M)

 \rightarrow ESS (Energy Storage System) based on battery storage

 \rightarrow backed-up by a gas generator in case of continuous low-illumination days (especially during the winter time from October to January)

✓ Long-term economy
 → Low levelized cost of electricity (LCOE)

Analysis of the site for a feasibility study

Feasibility for a PV installation

 \checkmark PV installation capacity : 14~15 kWp possible (45 pcs x 60c 320 Wp solar module)

✓ Installation type: fixed on roof-top (pitched roof)

✓ Roof tilt-angle : 29.4° fixed according to the architectural plan

 \rightarrow Not quite ideal considering the latitude (52°14' N) of the location

 \rightarrow Not steep enough for snow sliding in winter season

 \rightarrow Should be higher than at least 45°, if possible.

Prediction of electricity production for 15 kWp solar PV

✓ Simulated PV electricity production for 15 kWp PV system at 29.4° tilt and 0° azimuth (south) angle (PV installation on the pitched roof-top and inverter efficiency of 95%)

Annual production of 19 237 kWh for a 15 kWp solar PV system in Eastmain, Baie-James.

 \rightarrow Monthly average of 1 603 kWh PV electricity production

→ Much lower production than average in winter season, below 1 000 kWh/month from October to December

→ Mitigation solution needed: @ 45° tilt angle, production of monthly electricity higher than 1000 kWh in these winter months

Checking of the planned PV system

Design of system size (for off-grid Solar PV + ESS)

Summary for ESS (Energy Storage System) battery capacity (kWh) needed

*DoD \ # of days of autonomy	1	2	3	5
50% (Lead-acid)	44	89	133	222
70% (nano-carbon AGM)	32	63	95	159
90% (Li-ion)	23	46	69	116

*DoD: Depth of Discharge (of the battery)

Summary for PV capacity (kWp) needed

PV capacity (kWp)	15	Given by the architectural plan
Daily electricity consumption limit (kWh)	18	This is the maximum consumption per day in winter at a given PV capacity of 15 kWp

15 kWp solar PV + ESS(Energy Storage System)

✓Components

- Solar Module: SHINSUNG mono 60c, 320W x 45 pc
- Supporting structure: **TBD**, rust-free racking system (sustainable up to 45 m/sec wind speed)
- battery bank : **TBD** (depending on the customer's desired preference and # of days of autonomy)
- off-grid DC-coupled system: SCHNEIDER inverter/charger, MPPT charge controller, etc...
- off-grid (grid interactive) DC-coupled system: **OUTBACK** inverter/charger, MPPT charge controller, etc...
- Hybrid (off-grid/on-grid) All-in-One system: HANSOL All-in-One ESS system etc...

✓ Design & Construction

Components – Solar Module (SHINSUNG)

Components – battery banks

✓ Different technologies, costs and operation & maintenance (OM) !

 \checkmark Cost-effectiveness (up-front cost vs. long-term cost) \rightarrow nano-carbon battery is one of the best options.

Components – SCHNEIDER inverter/charger, *mppt charge controller

Components – OUTBACK inverter/charger, *mppt charge controller

*mppt: maximum power point tracking

Components – Hybrid All-in-One ESS (HANSOL, ex-SAMSUNG)

Options for PV production & consumption for Eastmain project

Recommended #2			Recommended #1
	Option1 (Schneider)	Option2 (Outback)	Option3 (Hansol Korea)
Туре	Grid-tied with back-up	Hybrid (grid interactive)	Hybrid (off-grid/on-grid)
PV Capacity	15 kWp	15 kWp	15 kWp
Storage capacity (kWh)	96 kWh nano-carbon AGM (GS battery)	96 kWh nano-carbon AGM (GS battery)	60 kWp Li-ion battery (Samsung)
Components	Battery inverter (3 pcs), mppt charge contr. (3 pcs), PDP (1 pcs)	Battery inverter (2 pcs), mppt charge contr. (4 pcs), Load center (2 pcs)	All-in-one (*PCS/BMS/EMS)
Cost	\$\$\$	\$\$\$	\$\$\$

Calculation based on 18 kWh/day consumption

*PCS: Power Conditioning System BMS: Battery Management System EMS: Energy Management System

Option #1 – Schneider solution (off-grid 15 kWp solar PV + 96 kWh storage)

Option #2 – Outback solution (hybrid 15 kWp solar PV + 96 kWh storage)

Main components: 2 x Radian GS8048A inverter (8kW) 4 x FM100 mppt charge controller (5kW) 2 x GSLC Load Center 2 x nano carbon GS battery bank (48 kWh)

Option #3 – HANSOL solution (15 kWp solar PV + 60 kWh Li-ion storage)

All-in-One ESS Li-ion 60kWh/20kW

Main components: 3 x All-in-One ESS/PCS (6.6kW) 15 x Li-ion Battery (SAMSUNG) pack (4kW)

Conclusions

✓ The house planned in Eastmain (52°14 N latitude) can accommodate up to 15 kWp Solar PV system on the rooftop.

 \checkmark This PV system can generate about 19 237 kWH/year in this SUB-ARCTIC area. However, during winter season (especially, October to January), the PV electricity production may drastically decrease below 1 000 kWH/month under the current tilt angle of the roof (29.4 degree) according to the architectural plan.

 \checkmark A steeper adjustment of the roof tilt angle (higher than 45 degree) can increase the PV electricity generation, especially during the winter months and facilitate a natural snow sliding removal on the solar arrays.

 \checkmark For off-grid system, the 15kWp solar PV system physically limits the use of daily electricity consumption to 18 kWh/day in winter. For a higher consumption, a larger PV system size (> 15 kWp) is needed.

 \checkmark For off-grid system, under the conditions of daily 18 kWh electricity consumption and 3 days of autonomy, the different capacity of the battery bank can be planned. Much less capacity (as well as weight and volume) is needed for Li-ion battery than for Lead-acid battery due to its higher energy storage density.

✓ We suggested three options with different combination of battery technologies (conventional lead-acid, nano-carbon AGM, and Li-ion battery). We recommend the option #1 (OUTBACK solution with nano-carbon GS battery bank) and the option #3 (HANSOL All-in-One ESS with SAMSUNG Li-ion battery pack).

End of document

IDS Énergie and PVavenue Inc. proudly presented "15 kW solar PV + battery storage" for the Eastmain (Baie-James) project

Thank you very much!

For more information, please contact Mr. Denis St-Yves @ IDS énergie, +1 819 373 5978, info@ids-energie.com Dr. Junegie Hong @ PVavenue Inc, +1 514 708 4536, info@pvavenue.com

